STUDY MODULE D	ESCRIPTION FORM	
Name of the module/subject Co		Code 1011105421011137646
Field of study Logistics - Part-time studies - Second-cycle	Profile of study (general academic, practical) (brak)	Year /Semester
Elective path/specialty Chain of Delivery Logistics	Subject offered in: Polish	Course (compulsory, elective) obligatory
Cycle of study:	Form of study (full-time,part-time)	
Second-cycle studies	part-time	
No. of hours Lecture: 16 Classes: 14 Laboratory: -	Project/seminars:	No. of credits
Status of the course in the study program (Basic, major, other) (brak)	(university-wide, from another fie	^{eld)} brak)
Education areas and fields of science and art		ECTS distribution (number and %)
the sciences		1 25%
Mathematical sciences		1 25%
social sciences		3 75%
Economics		3 75%

Responsible for subject / lecturer:

dr Tomasz Brzęczek

email: tomasz.brzeczek@put.poznan.pl

tel. 61 665 33 92

Wydział Inżynierii Zarządzania ul. Strzelecka 11 60-965 Poznań

Responsible for subject / lecturer:

dr Tomasz Brzęczek

email: tomasz.brzeczek@put.poznan.pl

tel. 61 665 33 92

Faculty of Engineering Management ul. Strzelecka 11 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Student knows economic terms and management problems, esppecially operation management problems.		
2	Skills	Student has Excel and computer skills. Makes basic operations of matrix algebra.		
3	Social competencies	Student works in team and prepares project.		

Assumptions and objectives of the course:

To develop skills of input-output modeling in management systems and optimization skills. To deliver knowledge about methods of management optimization and methods of estimation of an economic model.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student knows typical optimization problems in management, their objectives and constraints. [K2A_W01]
- 2. Knows problems of production structure, mixture and schedulling. [K2A_W09]
- 3. Knows allocation problems for tasks, resources, travel route and for transport plan problem. [K2A_W09]
- 4. Knows optimization methods with continous and descrete variable and linear or non-linear function. [K2A_W09]
- 5. Knows multi criteria optimization methods. [K2A_W09]
- 6. Knows ordinary least squares method. [K2A_W10]

Skills:

- 1. Student builds input-output model of economic system effectiveness. [K2A_U01]
- 2. Uses optimization methods: graphical, simplex, graphs and transportation algorithm. [K2A_U04,]
- 3. Student estimates or optimizes models with Excel, GRETL and Solver (inc. Solver Foundation). [K2A_U07]
- 4. Uses multi criteria methods (aims hierarchy, metacriterion, fulfillment degre, AHP). [K2A_U04]
- 5. Explains results of optimization models and uses them in management. [K2A_U02]

Social competencies:

Faculty of Engineering Management

- 1. Student is aware of optimization benefits in management and planning. [K2A_K03]
- 2. Spreads optimization in management problem solving. [K2A_K05]
- 3. Can objectively assess and analyze data and solutions of management problems. [S2A_K06]

Assessment methods of study outcomes

Formulating mark:

a) concerning exercises and lecture: on a basis of answers to questions about explained subjects b) concerning laboratory: assessment of proceeding in realisation of actual tasks

Ending mark:

- a) concerning exercises and lecture: written test in theory and tasks
- b) concerning laboratory: test in solving tasks with use of computer or team project ?Optimization problem solution in a chosen company?.

Course description

- 1. Clasification and modeling of decision tasks. Problems of production structure, mixture, resource division, transportation and tasks allocation.
- 2. Linear programming. Simplex and graphical method.
- 3. Multi-criteria continous programming. Metacriterion, objectives hierarchy.
- 4. Multi-criteria integer programming. Fulfillment degre, AHP.
- 5. Net programming. CPM? critical path method. PERT-program evaluation and review technique.
- 7. Transportat optimization problem and Little algorithm.
- 8. Basics of nonlinear programming.

Basic bibliography:

- 1. Balakrishnan N., Render B., Stair RM., Managerial Decision Modeling with Spreadsheets, Pearson Education 2006.
- 2. Brzęczek T., Gaspars-Wieloch H., Godziszewski B., Podstawy badań operacyjnych i ekonometrii, Wydawnictwo PP, Poznań 2010.
- 3. Maddala G.S., Lahiri K., Introduction to Econometrics 4-th edition, Wiley 2009.
- 4. Ravindran A.R. (ed.), Operations Research and Management Science Handbook, 904 p., Operations Research Series, CRC Press 2007.
- 5. Przykłady i zadania z badań operacyjnych i ekonometrii, Sikora W. (red.), Wyd. UEP, seria MD 163, Poznań 2005.
- 6. Taha H.S., Operations Research: An Introduction (8-th Edition), 813 p., 2006 (with AMPL and Excel Solver examples).

Additional bibliography:

- 1. Krajevski LJ., Ritzman LP., Malhorta MK., Operations Management, Prentice Hall Int., 2006.
- 2. Węglarz J., Modelowanie i optymalizacja. Badania operacyjne i systemowe, Exit, Warszawa 2003.
- 3. Winston W.L., Operations Research: Applications and Algorithms (with CDrom and InfoTrac) 1440 p., Duxbery Press 2003.

Result of average student's workload

Activity	Time (working hours)	
1. lecture	16	
2. exercises	14	
3. consultation	30	
4. own work	30	

Student's workload

Source of workload	hours	ECTS		
Total workload	90	4		
Contact hours	60	3		
Practical activities	20	1		